Research Expertise
Materials Modeling
Ding Lab
methods: molecular dynamics • electronic structure theory • quantum electrodynamics • FDTD • Green’s functions systems: molecular electronics • photochemical systems • nanoparticles • quantum dots • electrochemical systems • MOFs properties: molecular structure • catalysis • energy transfer • electron transfer • electron transport • exciton diffusion • charge separation • plasmon effects
Holzwarth Lab
methods: DFT-based materials modeling • projector augmented wave formalism • all-electron approaches materials: insulating materials • ionic conducting materials • interfaces with anode materials properties: ionic conductivity • structural stability • stability with respect to decomposition
Kerr Lab
methods: quantum and statistical physics of condensed matter • formal theoretical methods properties: electronic transport • phonon transport
Thonhauser Lab
methods: ab initio materials modeling • classical materials modeling • DFT • quantum chemistry • molecular dynamics • GW • structure prediction • continuum modeling materials: organic electronics • gas storage • superconductors • thermoelectric • ferroelectrics • biomaterials • nanowires • clathrates • water • MOFs • surfaces • alloys properties: defects • catalysis • diffusion • transport • separation • self assembly • photo catalysis • phase diagrams • structure • vibrations • elastic moduli • reactions • enthalpies • conductivity • transition states • electronic structure • optical properties • photoluminescence • excited states lifetimes
Materials Synthesis, Processing, and Characterization
Bargigia Lab
methods: ultrafast optics • non-linear spectroscopy • time-resolved optical spectroscopy • charge-modulation techniques materials: bio-electronic interfaces • organic semiconductors • conjugated polymers • light-mediated triggering of biological cells properties: excited-state dynamics • polaron-lattice coupling • coupling with the bath and disorder effects • charge transport properties
Carroll Lab
Geyer Lab
nanocrystal synthesis • atomic layer deposition • electrochemistry • photocatalysis • inert-atmosphere synthesis • materials characterization • optical electronics • device fabrication
Ghadiri Lab
methods: ultrafast spectroscopy • ultrafast microscopy • non-time resolved
spectroscopy and microscopy • nanomaterials synthesis and
characterizations materials: inorganic multimetal semiconductors (chalcogenides, perovskites) • organic semiconductors • molecular junctions • biomimetic and biocompatible materials, energy conversion devices • bio-electronics properties Photochemical dynamics • excited state characteristics • exciton dynamics • charge and energy transfer
Gross Lab
solid oxide fuel cells • electrode engineering • solid-state materials synthesis and processing • solid-state materials characterization • composite design • gas adsorption calorimetry • MOFs
Guthold Lab
Jurchescu Lab
methods: structure-processing-property relationships • device physics properties: charge transport • charge injection • photocurrent • processes at device interfaces materials: organic semiconductors • hybrid lead halide perovskites • self-assembled monolayers
Kandada Lab
methods: coherent nonlinear spectroscopy • ultrafast and quantum optics properties: exciton physics • polarons • light-matter coupling • many-body correlations • photo-excitation dynamics • dephasing processes materials: two-dimensional materials • hybrid lead halide perovskites • organic semiconductors
Lachgar Lab
heterogeneous catalysis • materials synthesis • characterization • performance assessment
Ucer Lab
methods: ultrafast spectroscopy • fluorescence spectroscopy • multiphoton microscopy • photoconductivity • time-resolved photolysis • optical instrumentation materials: scintillator crystals • perovskites • semiconductor radiation detectors • alkali halides
Welker Lab
synthetic chemistry • small molecule synthesis • polysaccharide synthesis • molecule characterization
Williams Lab
methods: ultrafast laser spectroscopy • gamma spectrometry • modeling radiation interaction materials: insulators • semiconductors properties: scintillation • photoconductivity • radiation effects • excitons • self-trapping