Materials Modeling

methods: molecular dynamics • electronic structure theory • quantum electrodynamics • FDTD • Green’s functions    systems: molecular electronics • photochemical systems • nanoparticles • quantum dots • electrochemical systems • MOFs    properties: molecular structure • catalysis • energy transfer • electron transfer • electron transport • exciton diffusion • charge separation • plasmon effects

methods: DFT-based materials modeling • projector augmented wave formalism • all-electron approaches    materials: insulating materials • ionic conducting materials • interfaces with anode materials    properties: ionic conductivity • structural stability • stability with respect to decomposition

methods: quantum and statistical physics of condensed matter • formal theoretical methods    properties: electronic transport • phonon transport

Thonhauser Lab

(336) 758 3991
cfm@wfu.edu

methods: ab initio materials modeling • classical materials modeling • DFT • quantum chemistry • molecular dynamics • GW • structure prediction • continuum modeling    materials: organic electronics • gas storage • superconductors • thermoelectric • ferroelectrics • biomaterials • nanowires • clathrates • water • MOFs • surfaces • alloys    properties: defects • catalysis • diffusion • transport • separation • self assembly • photo catalysis • phase diagrams • structure • vibrations • elastic moduli • reactions • enthalpies • conductivity • transition states • electronic structure • optical properties • photoluminescence • excited states lifetimes

Materials Synthesis, Processing, and Characterization

methods: ultrafast optics • non-linear spectroscopy • time-resolved optical spectroscopy • charge-modulation techniques    materials: bio-electronic interfaces • organic semiconductors • conjugated polymers • light-mediated triggering of biological cells    properties: excited-state dynamics • polaron-lattice coupling • coupling with the bath and disorder effects • charge transport properties

nanocrystal synthesis • atomic layer deposition • electrochemistry • photocatalysis • inert-atmosphere synthesis • materials characterization • optical electronics • device fabrication

methods: ultrafast spectroscopy • ultrafast microscopy • non-time resolved
spectroscopy and microscopy • nanomaterials synthesis and
characterizations materials: inorganic multimetal semiconductors (chalcogenides, perovskites) • organic semiconductors • molecular junctions • biomimetic and biocompatible materials, energy conversion devices • bio-electronics properties Photochemical dynamics • excited state characteristics • exciton dynamics • charge and energy transfer

solid oxide fuel cells • electrode engineering • solid-state materials synthesis and processing • solid-state materials characterization • composite design • gas adsorption calorimetry • MOFs

methods: structure-processing-property relationships • device physics    properties: charge transport • charge injection • photocurrent • processes at device interfaces    materials: organic semiconductors • hybrid lead halide perovskites • self-assembled monolayers

methods: coherent nonlinear spectroscopy • ultrafast and quantum optics    properties: exciton physics • polarons • light-matter coupling • many-body correlations • photo-excitation dynamics • dephasing processes    materials: two-dimensional materials • hybrid lead halide perovskites • organic semiconductors

heterogeneous catalysis • materials synthesis • characterization • performance assessment

methods: ultrafast spectroscopy • fluorescence spectroscopy • multiphoton microscopy • photoconductivity • time-resolved photolysis • optical instrumentation    materials: scintillator crystals • perovskites • semiconductor radiation detectors • alkali halides

synthetic chemistry • small molecule synthesis • polysaccharide synthesis • molecule characterization

methods:  ultrafast laser spectroscopy • gamma spectrometry • modeling radiation interaction    materials: insulators • semiconductors    properties: scintillation • photoconductivity • radiation effects • excitons • self-trapping